Electrical and Electronic Measurements

Lecture 9: Sensors and Transducers Part2: Velocity, Force and Liquid Level

Dr. Haitham El-Hussieny

Electronics and Communications Engineering Faculty of Engineering (Shoubra) Benha University

November 2018

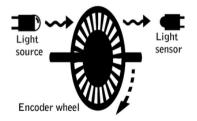
Lecture Outline:

1 Velocity Sensors.

2 Force Sensors.

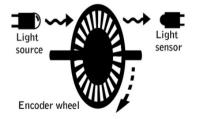
3 Liquid Level Sensors.

Table of Contents

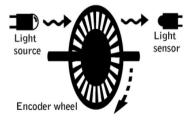

1 Velocity Sensors.

2 Force Sensors.

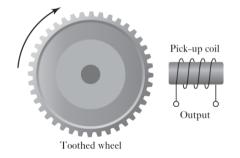
3 Liquid Level Sensors.


Velocity Sensors: [1] Incremental Encoders:

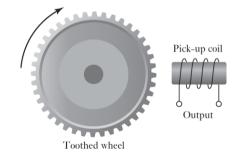
• The incremental encoder used for displacement sensing can be used for the measurement of angular velocity.

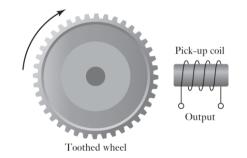

Velocity Sensors: [1] Incremental Encoders:

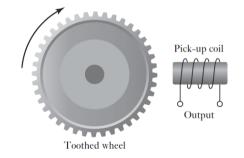
- The incremental encoder used for displacement sensing can be used for the measurement of angular velocity.
- The velocity could be determined by counting the number of pulses produced per second.



Velocity Sensors: [1] Incremental Encoders:


- The incremental encoder used for displacement sensing can be used for the measurement of angular velocity.
- The velocity could be determined by counting the number of pulses produced per second.
- Two tracks of slots could be used to determine the direction of velocity (clockwise or counter clock wise).


- The tachogenerator is used to measure angular velocity. It has two forms:
- **1** Variable Reluctance Tachogenerator:
- A toothed wheel of ferromagnetic material is attached to the rotating object.


- The tachogenerator is used to measure angular velocity. It has two forms:
- **1** Variable Reluctance Tachogenerator:
- A toothed wheel of ferromagnetic material is attached to the rotating object.
- A pick-up coil is wound on a permanent magnet. As the wheel rotates, the air gap between the coil and the ferromagnetic material changes.

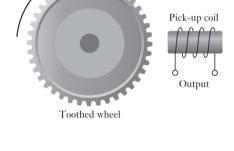
- The tachogenerator is used to measure angular velocity. It has two forms:
- **1** Variable Reluctance Tachogenerator:
- A toothed wheel of ferromagnetic material is attached to the rotating object.
- A pick-up coil is wound on a permanent magnet. As the wheel rotates, the air gap between the coil and the ferromagnetic material changes.
- The flux linked by a pick-up coil will be changed due to the change in the air gap.

- The tachogenerator is used to measure angular velocity. It has two forms:
- Variable Reluctance Tachogenerator:
- A toothed wheel of ferromagnetic material is attached to the rotating object.
- A pick-up coil is wound on a permanent magnet. As the wheel rotates, the air gap between the coil and the ferromagnetic material changes.
- The flux linked by a pick-up coil will be changed due to the change in the air gap. The resulting cyclic change in the flux produces an alternating e.m.f. in the pickup coil.

The flux ϕ changes with time as:

 $\phi = \phi_0 + \phi_a \cos(n\omega t)$

- ϕ_0 : The mean flux.
- ϕ_z : Flux variation amplitude.
- ω : Rotation speed
- n: No. of teeth.


$$e.m.f = -N\frac{d\phi}{dt} = N\phi_a n\omega sin\omega t$$

N: No. of turns of pickup coil.

$$e.m.f = E_{max} sin\omega t \left| \begin{array}{c} E_{max} \propto \omega \end{array} \right.$$

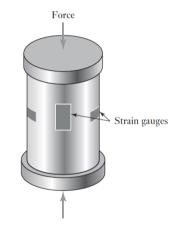
The induced e.m.f. could be shaped to a series of pulses that could be counted as a measure of angular velocity.

Dr. Haitham El-Hussieny

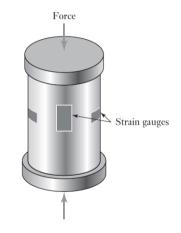
Velocity Sensors:

- [2] Tachogenerators:
 - The tachogenerator is used to measure angular velocity. It has two forms:
 - A.C. Generator:
 - It consists of a coil, termed the rotor, which rotates with the rotating shaft inside a magnetic field produced by a stationary permanent magnet.
 - When the coil rotates, an alternating e.m.f. is induced in it.
 - The amplitude or frequency of this alternating e.m.f. can be used as a measure of the angular velocity of the rotor.
 - The output may be rectified to give a d.c. voltage with a size which is proportional to the angular velocity.

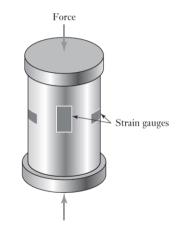
Rotating coil

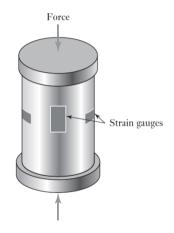

Table of Contents

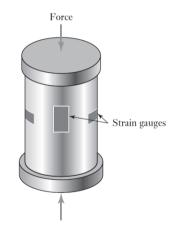
Velocity Sensors.


2 Force Sensors.

3 Liquid Level Sensors.


• Forces are commonly measured by the measurement of displacements.

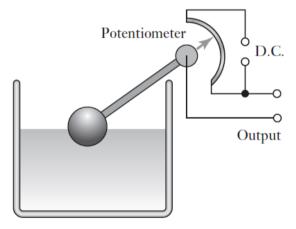

- Forces are commonly measured by the measurement of displacements.
- Strain gauges are used to monitor the strain produced in some member when stretched, compressed or bent by the application of the force.


- Forces are commonly measured by the measurement of displacements.
- Strain gauges are used to monitor the strain produced in some member when stretched, compressed or bent by the application of the force.
- The arrangement for measuring the force is generally referred to as a **load cell**.

- Forces are commonly measured by the measurement of displacements.
- Strain gauges are used to monitor the strain produced in some member when stretched, compressed or bent by the application of the force.
- The arrangement for measuring the force is generally referred to as a **load cell**.
- Load cell is a cylindrical tube to which strain gauges have been attached. When forces are applied to the cylinder the resistance will change which is a measure of the applied force.

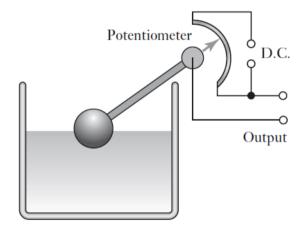
- Forces are commonly measured by the measurement of displacements.
- Strain gauges are used to monitor the strain produced in some member when stretched, compressed or bent by the application of the force.
- The arrangement for measuring the force is generally referred to as a **load cell**.
- Load cell is a cylindrical tube to which strain gauges have been attached. When forces are applied to the cylinder the resistance will change which is a measure of the applied force.
- A signal conditioning circuit is required to eliminate the effect of temperature change on the strain gauge.

Table of Contents

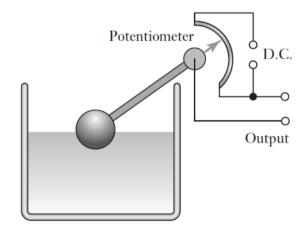

Velocity Sensors.

2 Force Sensors.

3 Liquid Level Sensors.

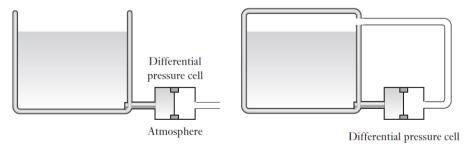

Liquid Level Sensors: [1] Floats:

• A direct method of monitoring the level of liquid in a vessel is by monitoring the movement of a float inside that vessel.


Liquid Level Sensors: [1] Floats:

- A direct method of monitoring the level of liquid in a vessel is by monitoring the movement of a float inside that vessel.
- The displacement of the float causes a lever arm to rotate and so move a slider across a potentiometer.

Liquid Level Sensors: [1] Floats:


- A direct method of monitoring the level of liquid in a vessel is by monitoring the movement of a float inside that vessel.
- The displacement of the float causes a lever arm to rotate and so move a slider across a potentiometer.
- The result is an output of a voltage related to the height of liquid.

Liquid Level Sensors:

[2] Differential pressure:

- An indirect method for measuring the level of a liquid is measure the liquid which is changed according to the liquid level.
- The differential pressure cell can be used to monitor the difference in pressure between the base of the vessel and the atmospheric pressure.
- In case of closed vessel, the differential pressure cell monitors the difference in pressure between the base of the vessel and the air above the surface of the liquid.

End of Lecture

Best Wishes